二叉树-C++语言

#include "stdafx.h"

#define STACK_MAX_SIZE 30

#define QUEUE_MAX_SIZE 30

#ifndef elemType

typedef char elemType;

#endif

/************************************************************************/

/* 以下是关于二叉树操作的11个简单算法 */

/************************************************************************/

struct BTreeNode{

elemType data;

BTreeNode *left;

BTreeNode *right;

};

/* 1.初始化二叉树 */

void initBTree(BTreeNode* *bt)

{

*bt = NULL;

return;

}

//建立二叉树(根据a所指向的二叉树广义表字符串建立)

void createBTree(BTreeNode* *bt, char *a)

{

BTreeNode *p;

//定义s数组为存储根结点指针的栈使用

BTreeNode *s[STACK_MAX_SIZE];

//定义top作为s栈的栈顶指针,初值为-1,表示空栈

int top = -1;

//用k作为处理结点的左子树和右子树,k = 1处理左子树,k = 2处理右子树

int k;

//用i扫描数组a中存储的二叉树广义表字符串,初值为0

int i = 0;

//把树根指针置为空,即从空树开始建立二叉树

*bt = NULL;

//每循环一次处理一个字符,直到扫描到字符串结束符\0为止

while(a[i] != '\0')

{

switch(a[i])

{

case ' ':

break; /* 对空格不作任何处理 */

case '(':

if(top == STACK_MAX_SIZE - 1)

{

printf("栈空间太小!\n");

exit(1);

}

top++;

s[top] = p;

k = 1;

break;

case ')':

if(top == -1)

{

printf("二叉树广义表字符串错误!\n");

exit(1);

}

top--;

break;

case ',':

k = 2;

break;

default:

p = new BTreeNode;

p->data = a[i];

p->left = p->right = NULL;

if(*bt == NULL)

{

*bt = p;

}

else

{

if( k == 1)

{

s[top]->left = p;

}else{

s[top]->right = p;

}

}

}

//为扫描下一个字符修改i值

i++;

}

return;

}

//检查二叉树是否为空,为空则返回1,否则返回0

int emptyBTree(BTreeNode *bt)

{

if(bt == NULL)

{

return 1;

}

else

{

return 0;

}

}

//求二叉树深度

int BTreeDepth(BTreeNode *bt)

{

if(bt == NULL)

{

//对于空树,返回0结束递归

return 0;

}

else

{

//计算左子树的深度

int dep1 = BTreeDepth(bt->left);

//计算右子树的深度

int dep2 = BTreeDepth(bt->right);

if(dep1 > dep2)

{

return dep1 + 1;

}

else

{

return dep2 + 1;

}

}

}

//从二叉树中查找值为x的结点,若存在则返回元素存储位置,否则返回空值

elemType *findBTree(BTreeNode *bt, elemType x)

{

if(bt == NULL)

{

return NULL;

}

else

{

if(bt->data == x)

{

return &(bt->data);

}

else

{

//分别向左右子树递归查找

elemType *p;

if(p = findBTree(bt->left, x))

{

return p;

}

if(p = findBTree(bt->right, x))

{

return p;

}

return NULL;

}

}

}

//弟归遍历输出二叉树(前序遍历)

void printBTree(BTreeNode *bt)

{

//树为空时结束递归,否则执行如下操作

if(bt != NULL)

{

//根左右

printf("%c, ", bt->data);

printBTree(bt->left);

printBTree(bt->right);

}

return;

}

//清除二叉树,使之变为一棵空树

void clearBTree(BTreeNode* *bt)

{

if(*bt != NULL)

{

clearBTree(&((*bt)->left));

clearBTree(&((*bt)->right));

free(*bt);

*bt = NULL;

}

return;

}

//前序遍历

void preOrder(BTreeNode *bt)

{

if(bt != NULL)

{

//根左右

printf("%c ", bt->data);

preOrder(bt->left);

preOrder(bt->right);

}

return;

}

//中序遍历

void inOrder(BTreeNode *bt)

{

if(bt != NULL)

{

//左根右

inOrder(bt->left);

printf("%c ", bt->data);

inOrder(bt->right);

}

return;

}

//后序遍历

void postOrder(BTreeNode *bt)

{

if(bt != NULL)

{

//左右根

postOrder(bt->left);

postOrder(bt->right);

printf("%c ", bt->data);

}

return;

}

//按层遍历

void levelOrder(BTreeNode *bt)

{

BTreeNode *p;

BTreeNode *q[QUEUE_MAX_SIZE];

int front = 0, rear = 0;

//将树根指针进队

if(bt != NULL)

{

rear = (rear + 1) % QUEUE_MAX_SIZE;

q[rear] = bt;

}

//队列非空

while(front != rear)

{

//使队首指针指向队首元素

front = (front + 1) % QUEUE_MAX_SIZE;

p = q[front];

printf("%c ", p->data);

//若结点存在左孩子,则左孩子结点指针进队

if(p->left != NULL)

{

rear = (rear + 1) % QUEUE_MAX_SIZE;

q[rear] = p->left;

}

//若结点存在右孩子,则右孩子结点指针进队

if(p->right != NULL)

{

rear = (rear + 1) % QUEUE_MAX_SIZE;

q[rear] = p->right;

}

}

return;

}

/************************************************************************/

/* 以下是关于二叉搜索树操作的4个简单算法 */

/************************************************************************/

//查找 递归算法

elemType *findBSTree1(BTreeNode *bst, elemType x)

{

/* 树为空则返回NULL */

if (bst == NULL)

{

return NULL;

}

else

{

if (x == bst->data)

{

return &(bst->data);

}

else

{

if (x < bst->data)

{ //向左子树查找并直接返回

return findBSTree1(bst->left, x);

}

else

{ //向右子树查找并直接返回

return findBSTree1(bst->right, x);

}

}

}

}

//查找 非递归算法

elemType *findBSTree2(BTreeNode *bst, elemType x)

{

while (bst != NULL)

{

if (x == bst->data)

{

return &(bst->data);

}

else if (x < bst->data)

{

bst = bst->left;

}

else

{

bst = bst->right;

}

}

return NULL;

}

//插入 递归算法

void insertBSTree1(BTreeNode* *bst, elemType x)

{

//新建一个根结点

if (*bst == NULL)

{

BTreeNode *p = new BTreeNode;

p->data = x;

p->left = p->right = NULL;

*bst = p;

return;

}

else if (x < (*bst)->data)

{ //向左子树完成插入运算

insertBSTree1(&((*bst)->left), x);

}

else

{ //向右子树完成插入运算

insertBSTree1(&((*bst)->right), x);

}

}

//插入 非递归算法

void insertBSTree2(BTreeNode* *bst, elemType x)

{

BTreeNode *p;

BTreeNode *t = *bst, *parent = NULL;

//为待插入的元素查找插入位置

while (t != NULL)

{

parent = t;

if (x < t->data)

{

t = t->left;

}

else

{

t = t->right;

}

}

//建立值为x,左右指针域为空的新结点

p = new BTreeNode;

p->data = x;

p->left = p->right = NULL;

//将新结点链接到指针为空的位置

if (parent == NULL)

{

//作为根结点插入

*bst = p;

}

else if (x < parent->data)

{ //链接到左指针域

parent->left = p;

}else

{

parent->right = p;

}

return;

}

//创建二叉树

void createBSTree(BTreeNode* *bst, elemType a[], int n)

{

int i;

*bst = NULL;

for (i = 0; i < n; i++){

insertBSTree1(bst, a[i]);

}

return;

}

//删除值为x的结点,成功返回1,失败返回0

int deleteBSTree(BTreeNode* *bst, elemType x)

{

BTreeNode *temp = *bst;

if (*bst == NULL)

{

return 0;

}

if (x < (*bst)->data)

{

//向左子树递归

return deleteBSTree(&((*bst)->left), x);

}

if (x > (*bst)->data)

{

//向右子树递归

return deleteBSTree(&((*bst)->right), x);

}

//待删除的元素等于树根结点值且左子树为空,将右子树作为整个树并返回1

if ((*bst)->left == NULL)

{

*bst = (*bst)->right;

free(temp);

return 1;

}

//待删除的元素等于树根结点值且右子树为空,将左子树作为整个树并返回1

if ((*bst)->right == NULL)

{

*bst = (*bst)->left;

free(temp);

return 1;

}

else

{

//中序前驱结点为空时,把左孩子结点值赋给树根结点,然后从左子树中删除根结点

if ((*bst)->left->right == NULL)

{

(*bst)->data = (*bst)->left->data;

return deleteBSTree(&((*bst)->left), (*bst)->data);

}

else

{ //定位到中序前驱结点,把该结点值赋给树根结点,然后从以中序前驱结点为根的树上删除根结点

BTreeNode *p1 = *bst, *p2 = p1->left;

while (p2->right != NULL)

{

p1 = p2;

p2 = p2->right;

}

(*bst)->data = p2->data;

return deleteBSTree(&(p1->right), p2->data);

}

}

}

int main(int argc, char *argv[])

{

elemType x, *px;

elemType a[10] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'};

BTreeNode *bst = NULL;

createBSTree(&bst, a, 10);

printf("建立的二叉搜索树的广义表形式为:\r\n");

std::cout << "\r\n前序遍历:\r\n";

printBTree(bst);

printf("\r\n\r\n中序遍历:\r\n");

inOrder(bst);

printf("\r\n\r\n输入待查找元素的值:");

std::cin >> x;

if (px = findBSTree1(bst, x))

{

printf("查找成功!得到的x为:%d\r\n", *px);

}

else

{

printf("查找失败\r\n");

}

printf("输入待插入的元素值:");

std::cin >> x;

insertBSTree1(&bst, x);

printf("输入待删除元素值:");

std::cin >> x;

if (deleteBSTree(&bst, x)){

printf("1 ");

}else{

printf("0 ");

}

printf("\r\n\r\n进行相应操作后的中序遍历为:\r\n");

inOrder(bst);

printf("\r\n\r\n操作后的二叉搜索树的广义表的形式为:\r\n");

printBTree(bst);

printf("\r\n");

clearBTree(&bst);

system("pause");

return 0;

}