C#随机数生成,Mersenne Twister及最佳种子获得方法[保存]

C#自带的Random rnd = new Random() ,以时间作为随机数种子,在计算机高速运作中可能出现相同值

以下方式获取随机数种子

来源:http://archive.msdn.microsoft.com/MersenneTwister/Release/ProjectReleases.aspx?ReleaseId=529

protected void Button2_Click(object sender, EventArgs e)

{

//===1.===

int seed = Math.Abs((int)BitConverter.ToUInt32(Guid.NewGuid().ToByteArray(), 0));

Console.WriteLine("seed=" + seed);

//===2.===

byte[] rng = new byte[32];

System.Security.Cryptography.RandomNumberGenerator RndSeed = System.Security.Cryptography.RandomNumberGenerator.Create();

RndSeed.GetBytes(rng);

int seed1 = Math.Abs(BitConverter.ToInt32(rng, 0));

Console.WriteLine("seed1=" + seed1);

//===================================

Random random=new Random(seed);

NPack.MersenneTwister mt = new NPack.MersenneTwister(seed);

NPack.MersenneTwister mt1 = new NPack.MersenneTwister(seed1);

for (int i = 0; i < 50; i++)

{ Console.WriteLine(random.Next(50)); }

Console.ReadLine();

for (int i = 0; i < 50; i++)

{ Console.WriteLine(mt.Next(50)); }

Console.ReadLine();

for (int i = 0; i < 50; i++)

{ Console.WriteLine(mt1.Next(50)); }

Console.ReadLine();

}

}

namespace NPack

{

/// <summary>

/// Generates pseudo-random numbers using the Mersenne Twister algorithm.

/// </summary>

/// <remarks>

/// See <a href="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html">

/// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html%3C/a> for details

/// on the algorithm.

/// </remarks>

public class MersenneTwister : Random

{

/// <summary>

/// Creates a new pseudo-random number generator with a given seed.

/// </summary>

/// <param name="seed">A value to use as a seed.</param>

public MersenneTwister(Int32 seed)

{

init((UInt32)seed);

}

/// <summary>

/// Creates a new pseudo-random number generator with a default seed.

/// </summary>

/// <remarks>

/// <c>new <see cref="System.Random"/>().<see cref="Random.Next()"/></c>

/// is used for the seed.

/// </remarks>

public MersenneTwister()

: this(new Random().Next()) /* a default initial seed is used */

{ }

/// <summary>

/// Creates a pseudo-random number generator initialized with the given array.

/// </summary>

/// <param name="initKey">The array for initializing keys.</param>

public MersenneTwister(Int32[] initKey)

{

if (initKey == null)

{

throw new ArgumentNullException("initKey");

}

UInt32[] initArray = new UInt32[initKey.Length];

for (int i = 0; i < initKey.Length; ++i)

{

initArray[i] = (UInt32)initKey[i];

}

init(initArray);

}

public MersenneTwister(Random rnd)

{

// TODO: Complete member initialization

this.rnd = rnd;

}

/// <summary>

/// Returns the next pseudo-random <see cref="UInt32"/>.

/// </summary>

/// <returns>A pseudo-random <see cref="UInt32"/> value.</returns>

//[CLSCompliant(false)]

public virtual UInt32 NextUInt32()

{

return GenerateUInt32();

}

/// <summary>

/// Returns the next pseudo-random <see cref="UInt32"/>

/// up to <paramref name="maxValue"/>.

/// </summary>

/// <param name="maxValue">

/// The maximum value of the pseudo-random number to create.

/// </param>

/// <returns>

/// A pseudo-random <see cref="UInt32"/> value which is at most <paramref name="maxValue"/>.

/// </returns>

//[CLSCompliant(false)]

public virtual UInt32 NextUInt32(UInt32 maxValue)

{

return (UInt32)(GenerateUInt32() / ((Double)UInt32.MaxValue / maxValue));

}

/// <summary>

/// Returns the next pseudo-random <see cref="UInt32"/> at least

/// <paramref name="minValue"/> and up to <paramref name="maxValue"/>.

/// </summary>

/// <param name="minValue">The minimum value of the pseudo-random number to create.</param>

/// <param name="maxValue">The maximum value of the pseudo-random number to create.</param>

/// <returns>

/// A pseudo-random <see cref="UInt32"/> value which is at least

/// <paramref name="minValue"/> and at most <paramref name="maxValue"/>.

/// </returns>

/// <exception cref="ArgumentOutOfRangeException">

/// If <c><paramref name="minValue"/> &gt;= <paramref name="maxValue"/></c>.

/// </exception>

//[CLSCompliant(false)]

public virtual UInt32 NextUInt32(UInt32 minValue, UInt32 maxValue) /* throws ArgumentOutOfRangeException */

{

if (minValue >= maxValue)

{

throw new ArgumentOutOfRangeException();

}

return (UInt32)(GenerateUInt32() / ((Double)UInt32.MaxValue / (maxValue - minValue)) + minValue);

}

/// <summary>

/// Returns the next pseudo-random <see cref="Int32"/>.

/// </summary>

/// <returns>A pseudo-random <see cref="Int32"/> value.</returns>

public override Int32 Next()

{

return Next(Int32.MaxValue);

}

/// <summary>

/// Returns the next pseudo-random <see cref="Int32"/> up to <paramref name="maxValue"/>.

/// </summary>

/// <param name="maxValue">The maximum value of the pseudo-random number to create.</param>

/// <returns>

/// A pseudo-random <see cref="Int32"/> value which is at most <paramref name="maxValue"/>.

/// </returns>

/// <exception cref="ArgumentOutOfRangeException">

/// When <paramref name="maxValue"/> &lt; 0.

/// </exception>

public override Int32 Next(Int32 maxValue)

{

if (maxValue <= 1)

{

if (maxValue < 0)

{

throw new ArgumentOutOfRangeException();

}

return 0;

}

return (Int32)(NextDouble() * maxValue);

}

/// <summary>

/// Returns the next pseudo-random <see cref="Int32"/>

/// at least <paramref name="minValue"/>

/// and up to <paramref name="maxValue"/>.

/// </summary>

/// <param name="minValue">The minimum value of the pseudo-random number to create.</param>

/// <param name="maxValue">The maximum value of the pseudo-random number to create.</param>

/// <returns>A pseudo-random Int32 value which is at least <paramref name="minValue"/> and at

/// most <paramref name="maxValue"/>.</returns>

/// <exception cref="ArgumentOutOfRangeException">

/// If <c><paramref name="minValue"/> &gt;= <paramref name="maxValue"/></c>.

/// </exception>

public override Int32 Next(Int32 minValue, Int32 maxValue)

{

if (maxValue <= minValue)

{

throw new ArgumentOutOfRangeException();

}

if (maxValue == minValue)

{

return minValue;

}

return Next(maxValue - minValue) + minValue;

}

/// <summary>

/// Fills a buffer with pseudo-random bytes.

/// </summary>

/// <param name="buffer">The buffer to fill.</param>

/// <exception cref="ArgumentNullException">

/// If <c><paramref name="buffer"/> == <see langword="null"/></c>.

/// </exception>

public override void NextBytes(Byte[] buffer)

{

// [codekaizen: corrected this to check null before checking length.]

if (buffer == null)

{

throw new ArgumentNullException();

}

Int32 bufLen = buffer.Length;

for (Int32 idx = 0; idx < bufLen; ++idx)

{

buffer[idx] = (Byte)Next(256);

}

}

/// <summary>

/// Returns the next pseudo-random <see cref="Double"/> value.

/// </summary>

/// <returns>A pseudo-random double floating point value.</returns>

/// <remarks>

/// <para>

/// There are two common ways to create a double floating point using MT19937:

/// using <see cref="GenerateUInt32"/> and dividing by 0xFFFFFFFF + 1,

/// or else generating two double words and shifting the first by 26 bits and

/// adding the second.

/// </para>

/// <para>

/// In a newer measurement of the randomness of MT19937 published in the

/// journal "Monte Carlo Methods and Applications, Vol. 12, No. 5-6, pp. 385 –§C 393 (2006)"

/// entitled "A Repetition Test for Pseudo-Random Number Generators",

/// it was found that the 32-bit version of generating a double fails at the 95%

/// confidence level when measuring for expected repetitions of a particular

/// number in a sequence of numbers generated by the algorithm.

/// </para>

/// <para>

/// Due to this, the 53-bit method is implemented here and the 32-bit method

/// of generating a double is not. If, for some reason,

/// the 32-bit method is needed, it can be generated by the following:

/// <code>

/// (Double)NextUInt32() / ((UInt64)UInt32.MaxValue + 1);

/// </code>

/// </para>

/// </remarks>

public override Double NextDouble()

{

return compute53BitRandom(0, InverseOnePlus53BitsOf1s);

}

/// <summary>

/// Returns a pseudo-random number greater than or equal to zero, and

/// either strictly less than one, or less than or equal to one,

/// depending on the value of the given parameter.

/// </summary>

/// <param name="includeOne">

/// If <see langword="true"/>, the pseudo-random number returned will be

/// less than or equal to one; otherwise, the pseudo-random number returned will

/// be strictly less than one.

/// </param>

/// <returns>

/// If <paramref name="includeOne"/> is <see langword="true"/>,

/// this method returns a double-precision pseudo-random number greater than

/// or equal to zero, and less than or equal to one.

/// If <paramref name="includeOne"/> is <see langword="false"/>, this method

/// returns a double-precision pseudo-random number greater than or equal to zero and

/// strictly less than one.

/// </returns>

public Double NextDouble(Boolean includeOne)

{

return includeOne ? compute53BitRandom(0, Inverse53BitsOf1s) : NextDouble();

}

/// <summary>

/// Returns a pseudo-random number greater than 0.0 and less than 1.0.

/// </summary>

/// <returns>A pseudo-random number greater than 0.0 and less than 1.0.</returns>

public Double NextDoublePositive()

{

return compute53BitRandom(0.5, Inverse53BitsOf1s);

}

/// <summary>

/// Returns a pseudo-random number between 0.0 and 1.0.

/// </summary>

/// <returns>

/// A single-precision floating point number greater than or equal to 0.0,

/// and less than 1.0.

/// </returns>

public Single NextSingle()

{

return (Single)NextDouble();

}

/// <summary>

/// Returns a pseudo-random number greater than or equal to zero, and either strictly

/// less than one, or less than or equal to one, depending on the value of the

/// given boolean parameter.

/// </summary>

/// <param name="includeOne">

/// If <see langword="true"/>, the pseudo-random number returned will be

/// less than or equal to one; otherwise, the pseudo-random number returned will

/// be strictly less than one.

/// </param>

/// <returns>

/// If <paramref name="includeOne"/> is <see langword="true"/>, this method returns a

/// single-precision pseudo-random number greater than or equal to zero, and less

/// than or equal to one. If <paramref name="includeOne"/> is <see langword="false"/>,

/// this method returns a single-precision pseudo-random number greater than or equal to zero and

/// strictly less than one.

/// </returns>

public Single NextSingle(Boolean includeOne)

{

return (Single)NextDouble(includeOne);

}

/// <summary>

/// Returns a pseudo-random number greater than 0.0 and less than 1.0.

/// </summary>

/// <returns>A pseudo-random number greater than 0.0 and less than 1.0.</returns>

public Single NextSinglePositive()

{

return (Single)NextDoublePositive();

}

/// <summary>

/// Generates a new pseudo-random <see cref="UInt32"/>.

/// </summary>

/// <returns>A pseudo-random <see cref="UInt32"/>.</returns>

//[CLSCompliant(false)]

protected UInt32 GenerateUInt32()

{

UInt32 y;

/* _mag01[x] = x * MatrixA for x=0,1 */

if (_mti >= N) /* generate N words at one time */

{

Int16 kk = 0;

for (; kk < N - M; ++kk)

{

y = (_mt[kk] & UpperMask) | (_mt[kk + 1] & LowerMask);

_mt[kk] = _mt[kk + M] ^ (y >> 1) ^ _mag01[y & 0x1];

}

for (; kk < N - 1; ++kk)

{

y = (_mt[kk] & UpperMask) | (_mt[kk + 1] & LowerMask);

_mt[kk] = _mt[kk + (M - N)] ^ (y >> 1) ^ _mag01[y & 0x1];

}

y = (_mt[N - 1] & UpperMask) | (_mt[0] & LowerMask);

_mt[N - 1] = _mt[M - 1] ^ (y >> 1) ^ _mag01[y & 0x1];

_mti = 0;

}

y = _mt[_mti++];

y ^= temperingShiftU(y);

y ^= temperingShiftS(y) & TemperingMaskB;

y ^= temperingShiftT(y) & TemperingMaskC;

y ^= temperingShiftL(y);

return y;

}

/* Period parameters */

private const Int32 N = 624;

private const Int32 M = 397;

private const UInt32 MatrixA = 0x9908b0df; /* constant vector a */

private const UInt32 UpperMask = 0x80000000; /* most significant w-r bits */

private const UInt32 LowerMask = 0x7fffffff; /* least significant r bits */

/* Tempering parameters */

private const UInt32 TemperingMaskB = 0x9d2c5680;

private const UInt32 TemperingMaskC = 0xefc60000;

private static UInt32 temperingShiftU(UInt32 y)

{

return (y >> 11);

}

private static UInt32 temperingShiftS(UInt32 y)

{

return (y << 7);

}

private static UInt32 temperingShiftT(UInt32 y)

{

return (y << 15);

}

private static UInt32 temperingShiftL(UInt32 y)

{

return (y >> 18);

}

private readonly UInt32[] _mt = new UInt32[N]; /* the array for the state vector */

private Int16 _mti;

private static readonly UInt32[] _mag01 = { 0x0, MatrixA };

private void init(UInt32 seed)

{

_mt[0] = seed & 0xffffffffU;

for (_mti = 1; _mti < N; _mti++)

{

_mt[_mti] = (uint)(1812433253U * (_mt[_mti - 1] ^ (_mt[_mti - 1] >> 30)) + _mti);

// See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier.

// In the previous versions, MSBs of the seed affect

// only MSBs of the array _mt[].

// 2002/01/09 modified by Makoto Matsumoto

_mt[_mti] &= 0xffffffffU;

// for >32 bit machines

}

}

private void init(UInt32[] key)

{

Int32 i, j, k;

init(19650218U);

Int32 keyLength = key.Length;

i = 1; j = 0;

k = (N > keyLength ? N : keyLength);

for (; k > 0; k--)

{

_mt[i] = (uint)((_mt[i] ^ ((_mt[i - 1] ^ (_mt[i - 1] >> 30)) * 1664525U)) + key[j] + j); /* non linear */

_mt[i] &= 0xffffffffU; // for WORDSIZE > 32 machines

i++; j++;

if (i >= N) { _mt[0] = _mt[N - 1]; i = 1; }

if (j >= keyLength) j = 0;

}

for (k = N - 1; k > 0; k--)

{

_mt[i] = (uint)((_mt[i] ^ ((_mt[i - 1] ^ (_mt[i - 1] >> 30)) * 1566083941U)) - i); /* non linear */

_mt[i] &= 0xffffffffU; // for WORDSIZE > 32 machines

i++;

if (i < N)

{

continue;

}

_mt[0] = _mt[N - 1]; i = 1;

}

_mt[0] = 0x80000000U; // MSB is 1; assuring non-zero initial array

}

// 9007199254740991.0 is the maximum double value which the 53 significand

// can hold when the exponent is 0.

private const Double FiftyThreeBitsOf1s = 9007199254740991.0;

// Multiply by inverse to (vainly?) try to avoid a division.

private const Double Inverse53BitsOf1s = 1.0 / FiftyThreeBitsOf1s;

private const Double OnePlus53BitsOf1s = FiftyThreeBitsOf1s + 1;

private const Double InverseOnePlus53BitsOf1s = 1.0 / OnePlus53BitsOf1s;

private Random rnd;

private Double compute53BitRandom(Double translate, Double scale)

{

// get 27 pseudo-random bits

UInt64 a = (UInt64)GenerateUInt32() >> 5;

// get 26 pseudo-random bits

UInt64 b = (UInt64)GenerateUInt32() >> 6;

// shift the 27 pseudo-random bits (a) over by 26 bits (* 67108864.0) and

// add another pseudo-random 26 bits (+ b).

return ((a * 67108864.0 + b) + translate) * scale;

// What about the following instead of the above? Is the multiply better?

// Why? (Is it the FMUL instruction? Does this count in .Net? Will the JITter notice?)

//return BitConverter.Int64BitsToDouble((a << 26) + b));

}

}

}