tensorflow实战系列,四基于TensorFlow构建AlexNet代码解析

整体流程介绍:

我们从main函数走,在train函数中,首先new了一个network;然后初始化后开始训练,训练时设定设备和迭代的次数,训练完后关闭流程图。

下面看network这个类,这个类有许多方法,inference方法定义整个网络的结构,包括每一层的规格和连接的顺序。__init__方法是把权值和偏置初始化。其他两个方法一个是optimer,定义优化器,一个是sorfmax_loss定义损失函数。

程序最开始的两个函数read_and_decode和get_batch。一个是读取tfrecords,一个是生成批次数据。

OK。就是这样简单。

下面展开说明。

#!/usr/bin/env python2

# -*- coding: utf-8 -*-

"""

Created on Mon Jan 16 11:08:21 2017

@author: root

"""

import tensorflow as tf

import frecordfortrain

tf.device(0)

def read_and_decode(filename):

#根据文件名生成一个队列

#读取已有的tfrecords,返回图片和标签

filename_queue = tf.train.string_input_producer([filename])

reader = tf.TFRecordReader()

_, serialized_example = reader.read(filename_queue) #返回文件名和文件

features = tf.parse_single_example(serialized_example,

features={

\'label\': tf.FixedLenFeature([], tf.int64),

\'img_raw\' : tf.FixedLenFeature([], tf.string),

})

img = tf.decode_raw(features[\'img_raw\'], tf.uint8)

img = tf.reshape(img, [227, 227, 3])

# img = tf.reshape(img, [39, 39, 3])

img = tf.cast(img, tf.float32) * (1. / 255) - 0.5

label = tf.cast(features[\'label\'], tf.int32)

print img,label

return img, label

def get_batch(image, label, batch_size,crop_size):

#数据扩充变换

distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪

distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转

#生成batch

#shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大

#保证数据打的足够乱

# num_threads=16,capacity=50000,min_after_dequeue=10000)

images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,

num_threads=2,capacity=2,min_after_dequeue=10)

# 调试显示

#tf.image_summary(\'images\', images)

print "in get batch"

print images,label_batch

return images, tf.reshape(label_batch, [batch_size])

#from data_encoder_decoeder import encode_to_tfrecords,decode_from_tfrecords,get_batch,get_test_batch

import cv2

import os

class network(object):

def inference(self,images):

# 向量转为矩阵

# images = tf.reshape(images, shape=[-1, 39,39, 3])

images = tf.reshape(images, shape=[-1, 227,227, 3])# [batch, in_height, in_width, in_channels]

images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理

#第一层 定义卷积偏置和下采样

conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights[\'conv1\'], strides=[1, 4, 4, 1], padding=\'VALID\'),

self.biases[\'conv1\'])

relu1= tf.nn.relu(conv1)

pool1=tf.nn.max_pool(relu1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding=\'VALID\')

#第二层

conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights[\'conv2\'], strides=[1, 1, 1, 1], padding=\'SAME\'),

self.biases[\'conv2\'])

relu2= tf.nn.relu(conv2)

pool2=tf.nn.max_pool(relu2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding=\'VALID\')

# 第三层

conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights[\'conv3\'], strides=[1, 1, 1, 1], padding=\'SAME\'),

self.biases[\'conv3\'])

relu3= tf.nn.relu(conv3)

# pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\'VALID\')

conv4=tf.nn.bias_add(tf.nn.conv2d(relu3, self.weights[\'conv4\'], strides=[1, 1, 1, 1], padding=\'SAME\'),

self.biases[\'conv4\'])

relu4= tf.nn.relu(conv4)

conv5=tf.nn.bias_add(tf.nn.conv2d(relu4, self.weights[\'conv5\'], strides=[1, 1, 1, 1], padding=\'SAME\'),

self.biases[\'conv5\'])

relu5= tf.nn.relu(conv5)

pool5=tf.nn.max_pool(relu5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding=\'VALID\')

# 全连接层1,先把特征图转为向量

flatten = tf.reshape(pool5, [-1, self.weights[\'fc1\'].get_shape().as_list()[0]])

drop1=tf.nn.dropout(flatten,0.5)

fc1=tf.matmul(drop1, self.weights[\'fc1\'])+self.biases[\'fc1\']

fc_relu1=tf.nn.relu(fc1)

fc2=tf.matmul(fc_relu1, self.weights[\'fc2\'])+self.biases[\'fc2\']

fc_relu2=tf.nn.relu(fc2)

fc3=tf.matmul(fc_relu2, self.weights[\'fc3\'])+self.biases[\'fc3\']

return fc3

def __init__(self):

#初始化权值和偏置

with tf.variable_scope("weights"):

self.weights={

#39*39*3->36*36*20->18*18*20

\'conv1\':tf.get_variable(\'conv1\',[11,11,3,96],initializer=tf.contrib.layers.xavier_initializer_conv2d()),

#18*18*20->16*16*40->8*8*40

\'conv2\':tf.get_variable(\'conv2\',[5,5,96,256],initializer=tf.contrib.layers.xavier_initializer_conv2d()),

#8*8*40->6*6*60->3*3*60

\'conv3\':tf.get_variable(\'conv3\',[3,3,256,384],initializer=tf.contrib.layers.xavier_initializer_conv2d()),

#3*3*60->120

\'conv4\':tf.get_variable(\'conv4\',[3,3,384,384],initializer=tf.contrib.layers.xavier_initializer_conv2d()),

\'conv5\':tf.get_variable(\'conv5\',[3,3,384,256],initializer=tf.contrib.layers.xavier_initializer_conv2d()),

\'fc1\':tf.get_variable(\'fc1\',[6*6*256,4096],initializer=tf.contrib.layers.xavier_initializer()),

\'fc2\':tf.get_variable(\'fc2\',[4096,4096],initializer=tf.contrib.layers.xavier_initializer()),

#120->6

\'fc3\':tf.get_variable(\'fc3\',[4096,2],initializer=tf.contrib.layers.xavier_initializer()),

}

with tf.variable_scope("biases"):

self.biases={

\'conv1\':tf.get_variable(\'conv1\',[96,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),

\'conv2\':tf.get_variable(\'conv2\',[256,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),

\'conv3\':tf.get_variable(\'conv3\',[384,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),

\'conv4\':tf.get_variable(\'conv4\',[384,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),

\'conv5\':tf.get_variable(\'conv5\',[256,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),

\'fc1\':tf.get_variable(\'fc1\',[4096,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),

\'fc2\':tf.get_variable(\'fc2\',[4096,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),

\'fc3\':tf.get_variable(\'fc3\',[2,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32))

}

def inference_test(self,images):

# 向量转为矩阵

#这个是用于测试的

images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]

images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理

#第一层

conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights[\'conv1\'], strides=[1, 1, 1, 1], padding=\'VALID\'),

self.biases[\'conv1\'])

relu1= tf.nn.relu(conv1)

pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\'VALID\')

#第二层

conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights[\'conv2\'], strides=[1, 1, 1, 1], padding=\'VALID\'),

self.biases[\'conv2\'])

relu2= tf.nn.relu(conv2)

pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\'VALID\')

# 第三层

conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights[\'conv3\'], strides=[1, 1, 1, 1], padding=\'VALID\'),

self.biases[\'conv3\'])

relu3= tf.nn.relu(conv3)

pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\'VALID\')

# 全连接层1,先把特征图转为向量

flatten = tf.reshape(pool3, [-1, self.weights[\'fc1\'].get_shape().as_list()[0]])

fc1=tf.matmul(flatten, self.weights[\'fc1\'])+self.biases[\'fc1\']

fc_relu1=tf.nn.relu(fc1)

fc2=tf.matmul(fc_relu1, self.weights[\'fc2\'])+self.biases[\'fc2\']

return fc2

#计算softmax交叉熵损失函数

def sorfmax_loss(self,predicts,labels):

predicts=tf.nn.softmax(predicts)

labels=tf.one_hot(labels,self.weights[\'fc3\'].get_shape().as_list()[1])

loss = tf.nn.softmax_cross_entropy_with_logits(predicts, labels)

# loss =-tf.reduce_mean(labels * tf.log(predicts))# tf.nn.softmax_cross_entropy_with_logits(predicts, labels)

self.cost= loss

return self.cost

#梯度下降

def optimer(self,loss,lr=0.01):

train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)

return train_optimizer

def train():

batch_image,batch_label=read_and_decode("/home/zenggq/data/imagedata/data.tfrecords")

#网络链接,训练所用

net=network()

inf=net.inference(batch_image)

loss=net.sorfmax_loss(inf,batch_label)

opti=net.optimer(loss)

#验证集所用

init=tf.initialize_all_variables()

with tf.Session() as session:

with tf.device("/gpu:1"):

session.run(init)

coord = tf.train.Coordinator()

threads = tf.train.start_queue_runners(coord=coord)

max_iter=9000

iter=0

if os.path.exists(os.path.join("model",\'model.ckpt\')) is True:

tf.train.Saver(max_to_keep=None).restore(session, os.path.join("model",\'model.ckpt\'))

while iter<max_iter:

loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_image,batch_label,inf])

if iter%50==0:

print \'trainloss:\',loss_np

iter+=1

coord.request_stop()#queue需要关闭,否则报错

coord.join(threads)

if __name__ == \'__main__\':

#主函数训练

train()