《高等应用数学问题的MATLAB求解》——第3章习题代码

(1)求极限

\[ \lim_{x\rightarrow \infty} (3^x+9^x)^{1/x}, \lim_{x\rightarrow\infty}\frac{(x+2)^{x+2}(x+3)^{x+3}}{(x+5)^{2x+5}}, \lim_{x \rightarrow a}{\left(\frac{\tan x}{\tan a}\right)^{\cot(x-a)}},\\ \lim_{x\rightarrow 0}\left[\frac{1}{\ln(x+\sqrt{1+x^2})}-\frac{1}{\ln(1+x)}\right],\\ \lim_{x\rightarrow \infty}\left[\sqrt[3]{x^3+x^2+x+1}-\sqrt{x^2+x+1}\frac{\ln(e^x+x}{x}\right]\]

>> syms x,a;
>> f1=(3^x+9^x)^(1/x);
>> f2=(x+2)^(x+2)*(x+3)^(x+3)/(x+5)^(2*x+5);
>> f3=(tan(x)/tan(a))^cot(x-a);
>> f4=1/log(x+sqrt(1+x^2))-1/log(1+x);
>> f5=(x^3+x^2+x+1)^(1/3)-sqrt(x^2+x+1)*log(exp(x)+x)/x;
>> limit(f1,x,inf)
>> limit(f2,x,inf)
>> limit(f3,x,a)
>> limit(f4,x,0)
>> limit(f5,x,inf)

(2)

(5)\(y(t)=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}\)的4阶导数

>> syms x;y=sqrt((x-1)*(x-2)/((x-3)*(x-4)));
>> tic,diff(y,x,4),toc

(6)

(8)直接求极限与洛必达对比:

\[\lim_{x\rightarrow 0}\frac{\ln(1+x)\ln(1-x)-\ln(1-x^2)}{x^4} \]

>> syms x;f=(log(1+x)*log(1-x)-log(1-x^2))/x^4;
>> f1=log(1+x)*log(1-x)-log(1-x^2);f2=x^4;
>> y1=limit(f,x,0)
>> y2=diff(f1,x,4)/diff(f2,x,4);subs(y2,x,0)

(9)参数方程\(\begin{cases}x=\ln(\cos t)\\y=\cos t-t\sin t\end{cases}\),计算\(\frac{\text{d}y}{\text{d}x},\frac{\text{d}^2y}{\text{d}x^2}\)(例题的paradiff)

>> syms t;x=log(cos(t));y=cos(t)-t*sin(t);
>> paradiff(y,x,t,1)
>> paradiff(y,x,t,2)

(11)\(u=\arccos\sqrt{\frac{x}{y}}\)验证\(\frac{\partial^2u}{\partial x\partial y}=\frac{\partial^2u}{\partial y\partial x}\)

>> syms x y;
>> u=acos(sqrt(x/y));
>> diff(diff(u,y,1),x,1)-diff(diff(u,x,1),y,1)

(14)计算\(\frac{x}{y}\frac{\partial^2 f}{\partial x^2}-2\frac{\partial^2 f}{\partial x\partial y}+\frac{\partial^2 f}{\partial^2 y}\) 其中$$f(x,y)=\int_0^{xy} e{-t2}\text{d}t$$

>> syms x y t;
>> f(x,y)=int(exp(-t^2),0,x*y);
>> %f(x,y)=int(exp(-t^2),t,0,x*y);
>> g=diff(f,x,2)*x/y-2*diff(diff(f,x,1),y,1)+diff(f,y,2)

(15)计算\(\frac{\text{d}y}{\text{d}x},\frac{\text{d}^2y}{\text{d}x^2},\frac{\text{d}^3y}{\text{d}x^3}\)

\[\begin{cases}x=e^{2t}\cos^2t\\y=e^{2t}\sin^2t\end{cases};\begin{cases}x=\frac{\arcsin t}{\sqrt{1+t^2}}\\ y=\frac{\arccos t}{\sqrt{1+t^2}}\end{cases} \]

>> syms t x1 y1 x2 y2;
>> x1=exp(2*t)*cos(t)^2;
>> y1=exp(2*t)*sin(t)^2;
>> x2=asin(t)/sqrt(1+t^2);
>> y2=acos(t)/sqrt(1+t^2);
>> paradiff(y1,x1,t,1)
>> paradiff(y1,x1,t,2)
>> paradiff(y1,x1,t,3)
>> paradiff(y2,x2,t,1)
>> paradiff(y2,x2,t,2)
>> paradiff(y2,x2,t,3)

(16)写题目浪费时间,专心代码

>> syms x y;f=x^2-x*y+2*y^2+x-y-1;
>> subs(impldiff(f,x,y,1),{x,y},{0,1})
>> subs(impldiff(f,x,y,2),{x,y},{0,1})
>> subs(impldiff(f,x,y,3),{x,y},{0,1})

(17)

>> syms x y z;
>> f=[3*x+exp(y)*z, x^3+y^2*sin(z)];
>> jacobian(f,[x y z])

(18)

>> syms x y;
>> u=x-y+x^2+2*x*y+y^2+x^3-3*x^2*y-y^3+x^4-4*x^2*y^2+y^4;
>> ux4=diff(u,x,4); ux3y1=diff(diff(u,x,3),y,1); ux2y2=diff(diff(u,x,2),y,2);

(19)

>> syms x y;
>> u=x-y+x^2+2*x*y+y^2+x^3-3*x^2*y-y^3+x^4-4*x^2*y^2+y^4;
>> laplacian(u,[x,y])

(20)

>> syms x y u xi eta;u=log(1/sqrt((x-xi)^2+(y-eta)^2));
>> diff(diff(diff(diff(u,x),y),xi),eta)

(21)

>> syms x y z t psi(z);
>> z=x^2+y^2;t=psi(z);
>> y*diff(t,x)-x*diff(t,y)

(22)

>> syms x y z u psi(z) phi(z);
>> z=x+y;u=x*phi(z)+y*psi(z);
>> diff(u,x,2)-2*diff(diff(u,x),y)+diff(u,y,2)

(23)

%1
>> syms x y v(x,y);
>> v(x,y)=[5*x^2*y 3*x^2-2*y];
>> divergence(v(x,y),[x,y]),curl(v(x,y),[x,y])
%2
>> syms x y z v;
>> v=[x^2*y^2 1 z];
>> divergence(v,[x,y,z]),curl(v,[x,y,z])
%3
>> syms x y z v;
>> v=[2*x*y*z^2 x^2*z^2+z*cos(y*z) 2*x^2*y*z+y*cos(y*z)]
>> divergence(v,[x,y,z]),curl(v,[x,y,z])

(25)

>> syms a b c x t;
>> I1=-(3*x^2+a)/(x^2*(x^2+a)^2);
>> I2=sqrt(x*(x+1))/(sqrt(x)+sqrt(1+x));
>> I3=x*exp(a*x)*cos(b*x);
>> I4=exp(a*x)*sin(b*x)*sin(c*x);
>> I5=(7*t^2-2)*3^(5*t+1);
>> int(I1,x),int(I2,x),int(I3,x),int(I4,x),int(I5,t)
>> %I2积不出

(26)

>> syms x, n;
>> f1=cos(x)/sqrt(x);
>> f2=(1+x^2)/(1+x^4);
>> f3=abs(cos(log(1/x)));
>> int(f1,x,0,inf),int(f2,x,0,1),int(f3,x,exp(-2*pi*n),1)
>> subs(int(3,x),x,1)-subs(int(3,x),x,exp(-2*pi*n))
>> %f3定积分积不出,先不定积分处理再利用牛顿莱布尼茨公式
>> %这里使用的是解析函数,使用subs赋值,如果直接函数格式,代入即可

(27)

>> syms x;f=1/((x+1)*sqrt(x^2+1));simplify(int(f,x,0,0.75))
>> syms x;f=asin(sqrt(x))/sqrt(x*(1-x));simplify(int(f,x,0,1))
>> syms x n; f=((sin(x)-cos(x))/(sin(x)+cos(x)))^(2*n+1); simplify(int(f,x,0,pi/4))

(28)

>> syms x;f=(sin(x)^2-4*sin(x)*cos(x)+3*cos(x)^2)/(sin(x)+cos(x));simplify(int(f,x))
>> syms x;f=(sin(x)^2-sin(x)*cos(x)+2*cos(x)^2)/(sin(x)+2*cos(x));simplify(int(f,x))

(29)

>> syms x s;f=exp(x)*sqrt(exp(x)-1)/(exp(x)+3);simplify(int(f,x,0,s))

(30)

>> syms beta alpha m t;syms s positive;
>> f1=1;f2=exp(beta*t);f3=sin(alpha*t);f4=t^m;
>> F1=simplify(int(f1*exp(-s*t),t,0,inf));F2=simplify(int(f2*exp(-s*t),t,0,inf));F3=simplify(int(f3*exp(-s*t),t,0,inf));F4=simplify(int(f4*exp(-s*t),t,0,inf));

(31)

>> syms x t;f(x)=exp(-5*x)*sin(3*x+pi/3);
>> R(t)=int(f(x)*f(t+x),x,0,t)

(32)

>> syms x y;f1=abs(cos(x+y));f2=asin(x+y);f3=abs(x)+abs(y);f4=sin(sqrt(x^2+y^2));
>> F1=simplify(int(int(f1,x,0,pi),y,0,pi));
>> F2=simplify(int(int(f2,y,-1,1-x),x,0,1));
>> F3=simplify(int(int(f3,y,abs(x)-1,1-abs(x)),x,-1,1));
>> F4=?

(33)

>> syms x y z;f=x^3*y^2*z; int(int(int(f,z,0,x*y),y,0,x),x,0,1)

(34)

>> syms a x positive;f=cos(a*x)/(1+x^2);int(f,x,0,inf)

(35)

>> syms a b t real;f=f(t);int(f,t,a,b)+int(f,t,b,a)

(36)

>> syms x y positive;f=sqrt(4-x^2-y^2); int(int(f,y,0,sqrt(4-x^2)),x,0,2)
>> syms x y z real;f2=x*y*z;f3=z*(x^2+y^2);
>> F2=int(int(int(f2,z,0,3-x-y),y,0,3-x),x,0,3);F3=int(int(int(f3,z,0,sqrt(4-x^2-y^2)),y,0,sqrt(4-x^2)),0,2);

(37)

>> syms x y z u w real;f1=x*y*z*u*exp(6-x^2-y^2-z^2-u^2);f2=sqrt(6-x^2-y^2-z^2-w^2-u^2);
>> F1=int(int(int(int(f1,u,0,z),z,0,y),y,0,x),x,0,1);
>> F2=int(int(int(int(int(f2,w,0,11/10),u,0,1),z,0,9/10),y,0,4/5),z,0,7/10);

(38)

>> syms x;f1(x)=(pi-abs(x))*sin(x);f2(x)=exp(abs(x));f3(x)=1-abs(2*x/pi-1);
>> F1=fseries(f1,x,12,-pi,pi);F2=fseries(f2,x,12,-pi,pi);F3=fseries(f3,x,12,0,pi);

(39)

>> syms t x a;f1=int(sin(t)/t,0,x);f2=log((1+x)/(1-x));f3=log(x+sqrt(1+x^2));f4=(1+4.2*x^2)^0.2;f5=exp(-5*x)*sin(3*x+pi/3);
>> y1=taylor(f1,x,\'Order\',9);y1_=taylor(f1,x,a,\'Order\',9);
>> y2=taylor(f2,x,\'Order\',9);y2_=taylor(f2,x,a,\'Order\',9);
>> y3=taylor(f3,x,\'Order\',9);y3_=taylor(f3,x,a,\'Order\',9);
>> y4=taylor(f4,x,\'Order\',9);y4_=taylor(f4,x,a,\'Order\',9);
>> y5=taylor(f5,x,\'Order\',9);y5_=taylor(f5,x,a,\'Order\',9);

(40)

>> syms t;f=exp(t);y=taylor(f,t,\'Order\',10);
>> ezplot(f,[-5,6]);hold on;ezplot(y,[-5,6])

(41)

>> syms x y a b;f1=exp(x)*cos(y);f2=log(1+x)*log(1+y);
>> y1=taylor(f1,[x,y],\'Order\',9);y1_=taylor(f1,[x,y],[a,b],\'Order\',9);

(42)

>> syms x y;f=(1-cos(x^2+y^2))/((x^2+y^2)*exp(x^2+y^2));
>> y=taylor(f,[x,y],[1,0],\'Order\',9);

(43)

>> y2=taylor(f2,[x,y],\'Order\',9);y2_=taylor(f2,[x,y],[a,b],\'Order\',9);

(45)

1

>> syms k n x positive;assume(n,\'integer\');sn=x(1/3)+symsum(x(1/(2k+1))-x(1/(2*k-1)),2,n);si=x(1/3)+symsum(x(1/(2*k+1))-x(1/(2k-1)),2,inf)

2

>> syms m n x k real;1+symsum(symprod(m-n+1,n,1,k)/symprod(n,n,1,k)*x^k,k,1,inf)

(48)

1

>> syms n; f=1/((2n)^2-1); symsum(f,n,1,inf)

2

>> syms n k;limit(nsymsum(1/(n^2+k*pi),k,1,n),n,inf)

(49)

>> syms n k theta; assume(n,\'integer\'); assume(~in(theta/(2*pi), \'integer\'));simplify(symsum(cos(k*theta),k,1,n)-sin(n*theta/2)*cos((n+1)*theta/2)/sin(theta/2))

(50)

>> syms n;f1=(2*n+1)*(2*n+7)/((2*n+3)*(2*n+5));f2=9*n^2/((3*n-1)*(3*n+1));syms a positive;f3=a^((-1)^n/n);
>> y1=symprod(f1,n,1,inf);y2=symprod(f2,n,1,inf);y3=symprod(f3,n,1,inf);

(51)

>> syms n x; an=int(tan(x)^n,x,0,pi/4);s=symsum((an+subs(an,n,n+2))/n,n,1,inf)

(54)

>> syms a b c positive; syms t m;
>> x1=a*(cos(t)+t*sin(t)); y1=a*(sin(t)-t*cos(t));f1=x1^2+y1^2;
>> x2=c*cos(t)/a; y2=c*sin(t)/b;f2=[y2*x2^3+exp(y2), x2*y2^3+x2*exp(y2)-2*y2];
>> x3=exp(t);y3=exp(-t);z3=a*t;f3=[y3,-x3,x3^2+y3^2];
>> path_integral(f1,[x1,y1],t,0,2*pi)
>> path_integral(f2,[x2,y2],t,0,pi)
>> path_integral(f3,[x3,y3,z3],t,0,1)
>> syms a positive; syms x y t m;x4=t;y4=0;f4=[exp(x4)*sin(y4)-m*y4,exp(x4)*cos(y4)-m];
>> I1=path_integral(f4,[x4,y4],t,a,0)
>> x4=a*(1-cos(t))/2;y4=-a*sin(t)/2;I2=path_integral(f4,[x4,y4],t,0,pi); I=I1+I2

(55)

>> syms theta a;rho=a*sin(theta)^2/3;
>> L=int(sqrt(rho^2+diff(rho,theta)^2),theta,0,3*pi)

(56)

>> f1=@(x,y)sqrt(4-x.^2-y.^2).*exp(-x.^2-y.^2);
>> fh=@(x)exp(-x.^2/2);
>> F1=integral2(f1,0,2,0,fh)

>> f2=@(x,y,z)z.*(x.^2+y.^2).*exp(-x.^2-y.^2-z.^2-x.*z);
>> F2=integral3(f2,0,2,0,2,0,2)