使用笔记:TF辅助工具--tensorflow slim,TF-Slim

  如果抛开Keras,TensorLayer,tfLearn,tensroflow 能否写出简介的代码? 可以!slim这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”

一.简介

  slim被放在tensorflow.contrib这个库下面,导入的方法如下:

  importtensorflow.contrib.slim as slim

  众所周知 tensorflow.contrib这个库,tensorflow官方对它的描述是:此目录中的任何代码未经官方支持,可能会随时更改或删除。每个目录下都有指定的所有者。它旨在包含额外功能和贡献,最终会合并到核心TensorFlow中,但其接口可能仍然会发生变化,或者需要进行一些测试,看是否可以获得更广泛的接受。所以slim依然不属于原生tensorflow。

  slim是一个使构建,训练,评估神经网络变得简单的库。它可以消除原生tensorflow里面很多重复的模板性的代码,让代码更紧凑,更具备可读性。另外slim提供了很多计算机视觉方面的著名模型(VGG, AlexNet等),我们不仅可以直接使用,甚至能以各种方式进行扩展。

  slim的子模块及功能介绍:

  arg_scope: provides a new scope named arg_scope that allows a user to define default arguments for specific operations within that scope.

  除了基本的namescope,variabelscope外,又加了argscope,它是用来控制每一层的默认超参数的。(后面会详细说)

  data: contains TF-slim's dataset definition, data providers, parallel_reader, and decoding utilities.

  貌似slim里面还有一套自己的数据定义,这个跳过,我们用的不多。

  evaluation: contains routines for evaluating models.

  评估模型的一些方法,用的也不多

  layers: contains high level layers for building models using tensorflow.

  这个比较重要,slim的核心和精髓,一些复杂层的定义

  learning: contains routines for training models.

  一些训练规则

  losses: contains commonly used loss functions.

  一些loss

  metrics: contains popular evaluation metrics.

  评估模型的度量标准

  nets: contains popular network definitions such as VGG and AlexNet models.

  包含一些经典网络,VGG等,用的也比较多

  queues: provides a context manager for easily and safely starting and closing QueueRunners.

  文本队列管理,比较有用。

  regularizers: contains weight regularizers.

  包含一些正则规则

  variables: provides convenience wrappers for variable creation and manipulation.

  slim管理变量的机制

二.slim定义模型

slim中定义一个变量的示例:

  # Model Variables

weights = slim.model_variable('weights',

shape=[10,10,3,3],

initializer=tf.truncated_normal_initializer(stddev=0.1),

regularizer=slim.l2_regularizer(0.05),

device='/CPU:0')

model_variables = slim.get_model_variables()

# Regular variables

my_var = slim.variable('my_var',

shape=[20,1],

initializer=tf.zeros_initializer())

regular_variables_and_model_variables = slim.get_variables()

  如上,变量分为两类:模型变量和局部变量。局部变量是不作为模型参数保存的,而模型变量会再save的时候保存下来。这个玩过tensorflow的人都会明白,诸如global_step之类的就是局部变量。slim中可以写明变量存放的设备,正则和初始化规则。还有获取变量的函数也需要注意一下,get_variables是返回所有的变量。

  slim中实现一个层:

  首先让我们看看tensorflow怎么实现一个层,例如卷积层:

input = ...

with tf.name_scope('conv1_1') as scope:

kernel = tf.Variable(tf.truncated_normal([3,3,64,128], dtype=tf.float32,

stddev=1e-1), name='weights'

conv = tf.nn.conv2d(input, kernel, [1,1,1,1], padding='SAME')

biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),

trainable=True, name='biases')

bias = tf.nn.bias_add(conv, biases)

conv1 = tf.nn.relu(bias, name=scope)

然后slim的实现:

input = ...

net = slim.conv2d(input,128, [3,3], scope='conv1_1')

但这个不是重要的,因为tenorflow目前也有大部分层的简单实现,这里比较吸引人的是slim中的repeat和stack操作:

net = ...

net = slim.conv2d(net,256, [3,3], scope='conv3_1')

net = slim.conv2d(net,256, [3,3], scope='conv3_2')

net = slim.conv2d(net,256, [3,3], scope='conv3_3')

net = slim.max_pool2d(net, [2,2], scope='pool2')

在slim中的repeat操作可以减少代码量:

net = slim.repeat(net,3, slim.conv2d,256, [3,3], scope='conv3')

net = slim.max_pool2d(net, [2,2], scope='pool2')

而stack是处理卷积核或者输出不一样的情况:

假设定义三层FC:

# Verbose way:

x = slim.fully_connected(x,32, scope='fc/fc_1')

x = slim.fully_connected(x,64, scope='fc/fc_2')

x = slim.fully_connected(x,128, scope='fc/fc_3')

使用stack操作:

slim.stack(x, slim.fully_connected, [32,64,128], scope='fc')

同理卷积层也一样:

# 普通方法:

x = slim.conv2d(x,32, [3,3], scope='core/core_1')

x = slim.conv2d(x,32, [1,1], scope='core/core_2')

x = slim.conv2d(x,64, [3,3], scope='core/core_3')

x = slim.conv2d(x,64, [1,1], scope='core/core_4')

# 简便方法:

slim.stack(x, slim.conv2d, [(32, [3,3]), (32, [1,1]), (64, [3,3]), (64, [1,1])], scope='core')

slim中的argscope:

如果你的网络有大量相同的参数,如下:

net = slim.conv2d(inputs,64, [11,11],4, padding='SAME',

weights_initializer=tf.truncated_normal_initializer(stddev=0.01),

weights_regularizer=slim.l2_regularizer(0.0005), scope='conv1')

net = slim.conv2d(net,128, [11,11], padding='VALID',

weights_initializer=tf.truncated_normal_initializer(stddev=0.01),

weights_regularizer=slim.l2_regularizer(0.0005), scope='conv2')

net = slim.conv2d(net,256, [11,11], padding='SAME',

weights_initializer=tf.truncated_normal_initializer(stddev=0.01),

weights_regularizer=slim.l2_regularizer(0.0005), scope='conv3')

然后我们用arg_scope处理一下:

with slim.arg_scope([slim.conv2d], padding='SAME',

weights_initializer=tf.truncated_normal_initializer(stddev=0.01)

weights_regularizer=slim.l2_regularizer(0.0005)):

net = slim.conv2d(inputs,64, [11,11], scope='conv1')

net = slim.conv2d(net,128, [11,11], padding='VALID', scope='conv2')

net = slim.conv2d(net,256, [11,11], scope='conv3')

这里额外说明一点,arg_scope的作用范围内,是定义了指定层的默认参数,若想特别指定某些层的参数,可以重新赋值(相当于重写),如上倒数第二行代码。

那如果除了卷积层还有其他层呢?那就要如下定义:

with slim.arg_scope([slim.conv2d, slim.fully_connected],

activation_fn=tf.nn.relu,

weights_initializer=tf.truncated_normal_initializer(stddev=0.01),

weights_regularizer=slim.l2_regularizer(0.0005)):

  with slim.arg_scope([slim.conv2d], stride=1, padding='SAME'):

    net = slim.conv2d(inputs,64, [11,11],4, padding='VALID', scope='conv1')

    net = slim.conv2d(net,256, [5,5],

    weights_initializer=tf.truncated_normal_initializer(stddev=0.03),

    scope='conv2')

    net = slim.fully_connected(net,1000, activation_fn=None, scope='fc')

VGG:

def vgg16(inputs):

with slim.arg_scope([slim.conv2d, slim.fully_connected],

activation_fn=tf.nn.relu,

weights_initializer=tf.truncated_normal_initializer(0.0,0.01),

weights_regularizer=slim.l2_regularizer(0.0005)):

net = slim.repeat(inputs,2, slim.conv2d,64, [3,3], scope='conv1')

net = slim.max_pool2d(net, [2,2], scope='pool1')

net = slim.repeat(net,2, slim.conv2d,128, [3,3], scope='conv2')

net = slim.max_pool2d(net, [2,2], scope='pool2')

net = slim.repeat(net,3, slim.conv2d,256, [3,3], scope='conv3')

net = slim.max_pool2d(net, [2,2], scope='pool3')

net = slim.repeat(net,3, slim.conv2d,512, [3,3], scope='conv4')

net = slim.max_pool2d(net, [2,2], scope='pool4')

net = slim.repeat(net,3, slim.conv2d,512, [3,3], scope='conv5')

net = slim.max_pool2d(net, [2,2], scope='pool5')

net = slim.fully_connected(net,4096, scope='fc6')

net = slim.dropout(net,0.5, scope='dropout6')

net = slim.fully_connected(net,4096, scope='fc7')

net = slim.dropout(net,0.5, scope='dropout7')

net = slim.fully_connected(net,1000, activation_fn=None, scope='fc8')

returnnet

三.训练模型

importtensorflow as tf

vgg = tf.contrib.slim.nets.vgg

# Load the images and labels.

images, labels = ...

# Create the model.

predictions, _ = vgg.vgg_16(images)

# Define the loss functions and get the total loss.

loss = slim.losses.softmax_cross_entropy(predictions, labels)

  

关于loss,要说一下定义自己的loss的方法,以及注意不要忘记加入到slim中让slim看到你的loss。

还有正则项也是需要手动添加进loss当中的,不然最后计算的时候就不优化正则目标了。

# Load the images and labels.

images, scene_labels, depth_labels, pose_labels = ...

# Create the model.

scene_predictions, depth_predictions, pose_predictions = CreateMultiTaskModel(images)

# Define the loss functions and get the total loss.

classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)

sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)

pose_loss = MyCustomLossFunction(pose_predictions, pose_labels)

slim.losses.add_loss(pose_loss) # Letting TF-Slim know about the additional loss.

# The following two ways to compute the total loss are equivalent:

regularization_loss = tf.add_n(slim.losses.get_regularization_losses())

total_loss1 = classification_loss + sum_of_squares_loss + pose_loss + regularization_loss

# (Regularization Loss is included in the total loss bydefault).

total_loss2 = slim.losses.get_total_loss()

四.读取保存模型变量

通过以下功能我们可以载入模型的部分变量:

# Create some variables.

v1 = slim.variable(name="v1", ...)

v2 = slim.variable(name="nested/v2", ...)

...

# Get list of variables to restore (which contains only'v2').

variables_to_restore = slim.get_variables_by_name("v2")

# Create the saver which will be used to restore the variables.

restorer = tf.train.Saver(variables_to_restore)

with tf.Session() as sess:

# Restore variables from disk.

restorer.restore(sess,"/tmp/model.ckpt")

print("Model restored.")

除了这种部分变量加载的方法外,我们甚至还能加载到不同名字的变量中。

假设我们定义的网络变量是conv1/weights,而从VGG加载的变量名为vgg16/conv1/weights,正常load肯定会报错(找不到变量名),但是可以这样:

def name_in_checkpoint(var):

return'vgg16/'+ var.op.name

variables_to_restore = slim.get_model_variables()

variables_to_restore = {name_in_checkpoint(var):varforvar in variables_to_restore}

restorer = tf.train.Saver(variables_to_restore)

with tf.Session() as sess:

# Restore variables from disk.

restorer.restore(sess,"/tmp/model.ckpt")

    通过这种方式我们可以加载不同变量名的变量