【tensorflow2.0】使用spark-scala调用tensorflow2.0训练好的模型

本篇文章介绍在spark中调用训练好的tensorflow模型进行预测的方法。

本文内容的学习需要一定的spark和scala基础。

如果使用pyspark的话会比较简单,只需要在每个excutor上用Python加载模型分别预测就可以了。

但工程上为了性能考虑,通常使用的是scala版本的spark。

本篇文章我们通过TensorFlow for Java 在spark中调用训练好的tensorflow模型。

利用spark的分布式计算能力,从而可以让训练好的tensorflow模型在成百上千的机器上分布式并行执行模型推断。

〇,spark-scala调用tensorflow模型概述

在spark(scala)中调用tensorflow模型进行预测需要完成以下几个步骤。

(1)准备protobuf模型文件

(2)创建spark(scala)项目,在项目中添加java版本的tensorflow对应的jar包依赖

(3)在spark(scala)项目中driver端加载tensorflow模型调试成功

(4)在spark(scala)项目中通过RDD在excutor上加载tensorflow模型调试成功

(5) 在spark(scala)项目中通过DataFrame在excutor上加载tensorflow模型调试成功

一,准备protobuf模型文件

我们使用tf.keras 训练一个简单的线性回归模型,并保存成protobuf文件。

import tensorflow as tf
from tensorflow.keras import models,layers,optimizers
 
## 样本数量
n = 800
 
## 生成测试用数据集
X = tf.random.uniform([n,2],minval=-10,maxval=10) 
w0 = tf.constant([[2.0],[-1.0]])
b0 = tf.constant(3.0)
 
Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0)  # @表示矩阵乘法,增加正态扰动
 
## 建立模型
tf.keras.backend.clear_session()
inputs = layers.Input(shape = (2,),name ="inputs") #设置输入名字为inputs
outputs = layers.Dense(1, name = "outputs")(inputs) #设置输出名字为outputs
linear = models.Model(inputs = inputs,outputs = outputs)
linear.summary()
 
## 使用fit方法进行训练
linear.compile(optimizer="rmsprop",loss="mse",metrics=["mae"])
linear.fit(X,Y,batch_size = 8,epochs = 100)  
 
tf.print("w = ",linear.layers[1].kernel)
tf.print("b = ",linear.layers[1].bias)
 
## 将模型保存成pb格式文件
export_path = "./data/linear_model/"
version = "1"       #后续可以通过版本号进行模型版本迭代与管理
linear.save(export_path+version, save_format="tf") 
!ls {export_path+version}
# 查看模型文件相关信息
!saved_model_cli show --dir {export_path+str(version)} --all

模型文件信息中这些标红的部分都是后面有可能会用到的。

二,创建spark(scala)项目,在项目中添加java版本的tensorflow对应的jar包依赖

如果使用maven管理项目,需要添加如下 jar包依赖

<!-- https://mvnrepository.com/artifact/org.tensorflow/tensorflow -->
<dependency>
    <groupId>org.tensorflow</groupId>
    <artifactId>tensorflow</artifactId>
    <version>1.15.0</version>
</dependency>

也可以从下面网址中直接下载 org.tensorflow.tensorflow的jar包

以及其依赖的org.tensorflow.libtensorflow 和 org.tensorflowlibtensorflow_jni的jar包 放到项目中。

https://mvnrepository.com/artifact/org.tensorflow/tensorflow/1.15.0

三, 在spark(scala)项目中driver端加载tensorflow模型调试成功

我们的示范代码在jupyter notebook中进行演示,需要安装toree以支持spark(scala)。

import scala.collection.mutable.WrappedArray
import org.{tensorflow=>tf}
 
//注:load函数的第二个参数一般都是“serve”,可以从模型文件相关信息中找到
 
val bundle = tf.SavedModelBundle 
   .load("/Users/liangyun/CodeFiles/eat_tensorflow2_in_30_days/data/linear_model/1","serve")
 
//注:在java版本的tensorflow中还是类似tensorflow1.0中静态计算图的模式,需要建立Session, 指定feed的数据和fetch的结果, 然后 run.
//注:如果有多个数据需要喂入,可以连续用用多个feed方法
//注:输入必须是float类型
 
val sess = bundle.session()
val x = tf.Tensor.create(Array(Array(1.0f,2.0f),Array(2.0f,3.0f)))
val y =  sess.runner().feed("serving_default_inputs:0", x)
         .fetch("StatefulPartitionedCall:0").run().get(0)
 
val result = Array.ofDim[Float](y.shape()(0).toInt,y.shape()(1).toInt)
y.copyTo(result)
 
if(x != null) x.close()
if(y != null) y.close()
if(sess != null) sess.close()
if(bundle != null) bundle.close()  
 
result

输出如下:

Array(Array(3.019596), Array(3.9878292))

四,在spark(scala)项目中通过RDD在excutor上加载tensorflow模型调试成功

下面我们通过广播机制将Driver端加载的TensorFlow模型传递到各个excutor上,并在excutor上分布式地调用模型进行推断。

import org.apache.spark.sql.SparkSession
import scala.collection.mutable.WrappedArray
import org.{tensorflow=>tf}
 
val spark = SparkSession
    .builder()
    .appName("TfRDD")
    .enableHiveSupport()
    .getOrCreate()
 
val sc = spark.sparkContext
 
//在Driver端加载模型
val bundle = tf.SavedModelBundle 
   .load("/Users/liangyun/CodeFiles/master_tensorflow2_in_20_hours/data/linear_model/1","serve")
 
//利用广播将模型发送到excutor上
val broads = sc.broadcast(bundle)
 
//构造数据集
val rdd_data = sc.makeRDD(List(Array(1.0f,2.0f),Array(3.0f,5.0f),Array(6.0f,7.0f),Array(8.0f,3.0f)))
 
//通过mapPartitions调用模型进行批量推断
val rdd_result = rdd_data.mapPartitions(iter => {
 
    val arr = iter.toArray
    val model = broads.value
    val sess = model.session()
    val x = tf.Tensor.create(arr)
    val y =  sess.runner().feed("serving_default_inputs:0", x)
             .fetch("StatefulPartitionedCall:0").run().get(0)
 
    //将预测结果拷贝到相同shape的Float类型的Array中
    val result = Array.ofDim[Float](y.shape()(0).toInt,y.shape()(1).toInt)
    y.copyTo(result)
    result.iterator
 
})
 
 
rdd_result.take(5)
bundle.close

输出如下:

Array(Array(3.019596), Array(3.9264367), Array(7.8607616), Array(15.974984)

五, 在spark(scala)项目中通过DataFrame在excutor上加载tensorflow模型调试成功

除了可以在Spark的RDD数据上调用tensorflow模型进行分布式推断,

我们也可以在DataFrame数据上调用tensorflow模型进行分布式推断。

主要思路是将推断方法注册成为一个sparkSQL函数。

import org.apache.spark.sql.SparkSession
import scala.collection.mutable.WrappedArray
import org.{tensorflow=>tf}
 
object TfDataFrame extends Serializable{
 
 
    def main(args:Array[String]):Unit = {
 
        val spark = SparkSession
        .builder()
        .appName("TfDataFrame")
        .enableHiveSupport()
        .getOrCreate()
        val sc = spark.sparkContext
 
 
        import spark.implicits._
 
        val bundle = tf.SavedModelBundle 
           .load("/Users/liangyun/CodeFiles/master_tensorflow2_in_20_hours/data/linear_model/1","serve")
 
        val broads = sc.broadcast(bundle)
 
        //构造预测函数,并将其注册成sparkSQL的udf
        val tfpredict = (features:WrappedArray[Float])  => {
            val bund = broads.value
            val sess = bund.session()
            val x = tf.Tensor.create(Array(features.toArray))
            val y =  sess.runner().feed("serving_default_inputs:0", x)
                     .fetch("StatefulPartitionedCall:0").run().get(0)
            val result = Array.ofDim[Float](y.shape()(0).toInt,y.shape()(1).toInt)
            y.copyTo(result)
            val y_pred = result(0)(0)
            y_pred
        }
        spark.udf.register("tfpredict",tfpredict)
 
        //构造DataFrame数据集,将features放到一列中
        val dfdata = sc.parallelize(List(Array(1.0f,2.0f),Array(3.0f,5.0f),Array(7.0f,8.0f))).toDF("features")
        dfdata.show 
 
        //调用sparkSQL预测函数,增加一个新的列作为y_preds
        val dfresult = dfdata.selectExpr("features","tfpredict(features) as y_preds")
        dfresult.show 
        bundle.close
    }
}
TfDataFrame.main(Array())
+----------+


| features|


+----------+


|[1.0, 2.0]|


|[3.0, 5.0]|


|[7.0, 8.0]|


+----------+





+----------+---------+


| features| y_preds|


+----------+---------+


|[1.0, 2.0]| 3.019596|


|[3.0, 5.0]|3.9264367|


|[7.0, 8.0]| 8.828995|


+----------+---------+

以上我们分别在spark 的RDD数据结构和DataFrame数据结构上实现了调用一个tf.keras实现的线性回归模型进行分布式模型推断。

在本例基础上稍作修改则可以用spark调用训练好的各种复杂的神经网络模型进行分布式模型推断。

但实际上tensorflow并不仅仅适合实现神经网络,其底层的计算图语言可以表达各种数值计算过程。

利用其丰富的低阶API,我们可以在tensorflow2.0上实现任意机器学习模型,

结合tf.Module提供的便捷的封装功能,我们可以将训练好的任意机器学习模型导出成模型文件并在spark上分布式调用执行。

这无疑为我们的工程应用提供了巨大的想象空间。

参考:

开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days