Go语言小试牛刀---几个简单的例子?

整理资料,发现之前手写的Go语言资料,现在贴过来。

第一个:Channel的使用,创建一个随机数

package main 

import "fmt"
import  "runtime"

func rand_generator_2() chan int{
        out := make(chan int)
        go func(){
                for{
                        out<-rand.Int()
                }
        }()
        return out
}

func main(){
        rand_service_handler := rand_generator_2()
        fmt.Printf("%d\n",<-rand_service_handler)
}

第二个:实现通过Channel通道求和的例子

package main

type NodeInterface interface {
  receive(i int)
  run() int
}

type Node struct {
  name string
  in_degree int
  in_ch chan int
  out_ch chan int

  inode NodeInterface
}

func NewNode(name string, inode NodeInterface) *Node {
  //创建一个Node,拥有两个channel
  return &Node{name, 0, make(chan int), make(chan int), inode}
}

func (from *Node) ConnectTo(to *Node) {
  to.in_degree++
  go func() {
    i := <- from.out_ch
    to.in_ch <- i
  }()
}

func (n *Node) Run() {
  go func() {
    defer func() {
      if x := recover(); x != nil {
        println(n.name, "panic with value ", x)
        panic(x)
      }
      println(n.name, "finished");
    }()

    for n.in_degree > 0 {
      received := <- n.in_ch
      n.inode.receive(received)
      n.in_degree--
    }
    ret := n.inode.run()
    n.out_ch <- ret
  }()
}

type DoubleNode struct {
  data int
}
//创建一个新的Node
func NewDoubleNode(name string, data int) *Node {
  return NewNode(name, &DoubleNode{data})
}

func (n *DoubleNode) receive(i int) {
}

func (n *DoubleNode) run() int {
  return n.data * 2
}

type SumNode struct {
  data int
}

func NewSumNode(name string) *Node {
  return NewNode(name, &SumNode{0})
}

func (n *SumNode) receive(i int) {
  n.data += i
}

func (n *SumNode) run() int {
  return n.data
}

func main() {
  sum := NewSumNode("sum")
  sum.Run()

  for _, num := range [5]int{1, 2, 3, 5, 6} {
    node := NewDoubleNode("double", num)
    node.ConnectTo(sum)
    node.Run()
  }

  println(<- sum.out_ch)
}

第三个例子:Go语言的并发操作,go语言可以适配机器的cpu达到最大并发

package main

import (
        "fmt"
        "runtime"
)

var workers = runtime.NumCPU()

type Result struct {
        jobname    string
        resultcode int
        resultinfo string
}

type Job struct {
        jobname string
        results chan<- Result
}

func main() {

        // go语言里大多数并发程序的开始处都有这一行代码, 但这行代码最终将会是多余的,
        // 因为go语言的运行时系统会变得足够聪明以自动适配它所运行的机器
        runtime.GOMAXPROCS(runtime.NumCPU())

        // 返回当前处理器的数量
        fmt.Println(runtime.GOMAXPROCS(0))
        // 返回当前机器的逻辑处理器或者核心的数量
        fmt.Println(runtime.NumCPU())

        // 模拟8个工作任务
        jobnames := []string{"gerry", "wcdj", "golang", "C++", "Lua", "perl", "python", "C"}
        doRequest(jobnames)
}

func doRequest(jobnames []string) {

        // 定义需要的channels切片
        jobs := make(chan Job, workers)
        results := make(chan Result, len(jobnames))
        done := make(chan struct{}, workers)

        // ---------------------------------------------
        /*
         * 下面是go协程并发处理的一个经典框架
         */

        // 将需要并发处理的任务添加到jobs的channel中
        go addJobs(jobs, jobnames, results) // Executes in its own goroutine

        // 根据cpu的数量启动对应个数的goroutines从jobs争夺任务进行处理
        for i := 0; i < workers; i++ {
                go doJobs(done, jobs) // Each executes in its own goroutine
        }

        // 新创建一个接受结果的routine, 等待所有worker routiines的完成结果, 并将结果通知主routine
        go awaitCompletion(done, results)

        // 在主routine输出结果
        processResults(results)
        // ---------------------------------------------

}

func addJobs(jobs chan<- Job, jobnames []string, results chan<- Result) {
        for _, jobname := range jobnames {

                // 在channel中添加任务
                jobs <- Job{jobname, results}
        }
        close(jobs)
}

func doJobs(done chan<- struct{}, jobs <-chan Job) {

        // 在channel中取出任务并计算
        for job := range jobs {

                /*
                 * 定义类型自己的方法来处理业务逻辑, 实现框架和业务分离
                 */
                job.Do()
        }

        // 所有任务完成后的结束标志, 一个空结构体切片
        done <- struct{}{}
}

// 方法是作用在自定义类型的值上的一类特殊函数
func (job Job) Do() {

        // 打印当前处理的任务名称
        fmt.Printf("... doing work in [%s]\n", job.jobname)

        // 模拟处理结果
        if job.jobname == "golang" {
                job.results <- Result{job.jobname, 0, "OK"}
        } else {
                job.results <- Result{job.jobname, -1, "Error"}
        }
}

func awaitCompletion(done <-chan struct{}, results chan Result) {
        for i := 0; i < workers; i++ {
                <-done
        }
        close(results)
}

func processResults(results <-chan Result) {
        for result := range results {
                fmt.Printf("done: %s,%d,%s\n", result.jobname, result.resultcode, result.resultinfo)
        }
}

第四个:网络编程方面,基于Go实现Ping的操作,比较难,还未看明白

// Copyright 2009 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// taken from http://golang.org/src/pkg/net/ipraw_test.go

package ping

import (
        "bytes"
        "errors"
        "net"
        "os"
        "time"
)

const (
        icmpv4EchoRequest = 8
        icmpv4EchoReply   = 0
        icmpv6EchoRequest = 128
        icmpv6EchoReply   = 129
)

type icmpMessage struct {
        Type     int             // type
        Code     int             // code
        Checksum int             // checksum
        Body     icmpMessageBody // body
}

type icmpMessageBody interface {
        Len() int
        Marshal() ([]byte, error)
}

// Marshal returns the binary enconding of the ICMP echo request or
// reply message m.
func (m *icmpMessage) Marshal() ([]byte, error) {
        b := []byte{byte(m.Type), byte(m.Code), 0, 0}
        if m.Body != nil && m.Body.Len() != 0 {
                mb, err := m.Body.Marshal()
                if err != nil {
                        return nil, err
                }
                b = append(b, mb...)
        }
        switch m.Type {
        case icmpv6EchoRequest, icmpv6EchoReply:
                return b, nil
        }
        csumcv := len(b) - 1 // checksum coverage
        s := uint32(0)
        for i := 0; i < csumcv; i += 2 {
                s += uint32(b[i+1])<<8 | uint32(b[i])
        }
        if csumcv&1 == 0 {
                s += uint32(b[csumcv])
        }
        s = s>>16 + s&0xffff
        s = s + s>>16
        // Place checksum back in header; using ^= avoids the
        // assumption the checksum bytes are zero.
        b[2] ^= byte(^s & 0xff)
        b[3] ^= byte(^s >> 8)

        return b, nil
}

// parseICMPMessage parses b as an ICMP message.
func parseICMPMessage(b []byte) (*icmpMessage, error) {
        msglen := len(b)
        if msglen < 4 {
                return nil, errors.New("message too short")
        }
        m := &icmpMessage{Type: int(b[0]), Code: int(b[1]), Checksum: int(b[2])<<8 | int(b[3])}
        if msglen > 4 {
                var err error
                switch m.Type {
                case icmpv4EchoRequest, icmpv4EchoReply, icmpv6EchoRequest, icmpv6EchoReply:
                        m.Body, err = parseICMPEcho(b[4:])
                        if err != nil {
                                return nil, err
                        }
                }
        }
        return m, nil
}

// imcpEcho represenets an ICMP echo request or reply message body.
type icmpEcho struct {
        ID   int    // identifier
        Seq  int    // sequence number
        Data []byte // data
}

func (p *icmpEcho) Len() int {
        if p == nil {
                return 0
        }
        return 4 + len(p.Data)
}

// Marshal returns the binary enconding of the ICMP echo request or
// reply message body p.
func (p *icmpEcho) Marshal() ([]byte, error) {
        b := make([]byte, 4+len(p.Data))
        b[0], b[1] = byte(p.ID>>8), byte(p.ID&0xff)
        b[2], b[3] = byte(p.Seq>>8), byte(p.Seq&0xff)
        copy(b[4:], p.Data)
        return b, nil
}

// parseICMPEcho parses b as an ICMP echo request or reply message body.
func parseICMPEcho(b []byte) (*icmpEcho, error) {
        bodylen := len(b)
        p := &icmpEcho{ID: int(b[0])<<8 | int(b[1]), Seq: int(b[2])<<8 | int(b[3])}
        if bodylen > 4 {
                p.Data = make([]byte, bodylen-4)
                copy(p.Data, b[4:])
        }
        return p, nil
}

func Ping(address string, timeout int) (alive bool) {
        err := Pinger(address, timeout)
        alive = err == nil
        return
}

func Pinger(address string, timeout int) (err error) {
        //拨号
        c, err := net.Dial("ip4:icmp", address)

        if err != nil {
                return
        }
        //?
        c.SetDeadline(time.Now().Add(time.Duration(timeout) * time.Second))
        defer c.Close()

        //>>
        typ := icmpv4EchoRequest
        xid, xseq := os.Getpid()&0xffff, 1
        wb, err := (&icmpMessage{
                Type: typ, Code: 0,
                Body: &icmpEcho{
                        ID: xid, Seq: xseq,
                        Data: bytes.Repeat([]byte("Go Go Gadget Ping!!!"), 3),
                },
        }).Marshal()
        if err != nil {
                return
        }
        if _, err = c.Write(wb); err != nil {
                return
        }
        var m *icmpMessage

        rb := make([]byte, 20+len(wb))

        for {
                if _, err = c.Read(rb); err != nil {
                        return
                }
                rb = ipv4Payload(rb)
                if m, err = parseICMPMessage(rb); err != nil {
                        return
                }
                switch m.Type {
                case icmpv4EchoRequest, icmpv6EchoRequest:
                        continue
                }
                break
        }
        return
}

func ipv4Payload(b []byte) []byte {
        if len(b) < 20 {
                return b
        }
        hdrlen := int(b[0]&0x0f) << 2
        return b[hdrlen:]
}