中文手机评论情感分类系列(一)

2021年09月15日 阅读数:3
这篇文章主要向大家介绍中文手机评论情感分类系列(一),主要内容包括基础应用、实用技巧、原理机制等方面,希望对大家有所帮助。

由于写论文须要,准备作手机评论的情感分析,依据现有的工具能够很容易中文评论进行去重复评论,分词,去停用词,向量化,而后用sklearn中的一款分类器来对数据进行情感分类。可是,因为本人打算依据手机不一样的属性对评论文本进行情感分析,如“电池”,‘相机’,‘处理器’等属性的评论。很难过的是,这些针对手机不一样属性的评论从互联网上爬取不到,只能找到综合的评论,即不根据手机特征分类的评论。天猫盒京东上的都只是综合评论。因此这里针对这些文本要进行多分类,即按属性分类。我主要把手机分为7个比较重要的特征。分别是,‘相机’,‘处理器’,‘价格’,‘售后服务’,‘续航’,‘外观’和‘性能’。这里涉及到了对评论进行多分类到了,我才用基于属性词典的分类方式,目前市面上没有关于手机各属性的词典,因此涉及到本身构建属性词典。本文分三个部分:python

1.词典构建app

2.文本基于属性词典的分类工具

3.评论文本的情感分析性能

本文介绍第一部分,属性词典的构建。直接放代码。ui

'''字典构建'''
import re,os,pyltp
import pandas as pd
import gensim
import time
from gensim.models.word2vec import PathLineSentences
import numpy as np
from sklearn.cluster import KMeans

class BulidDict():
    def __init__(self):
        self.a=1

    '''计算类似度大于0.8的词放入集合'''
    def similarity_word(self,list,p=0.8):
        model = gensim.models.Word2Vec.load('D:/machinelearning data/word2vec/phone_comment_vec_mini_count_5')
        word_list = []
        for w in list:
            listA=model.most_similar(w,topn=2000)
            print(w,listA)
            for i,j in listA:
                if j > p:
                    print(i)
                    word_list.append(i)
            #word_list+=word_list
        return set(word_list)

    '''将词存储起来'''
    def save(self,list,save_path):
        f = open(save_path, 'w', encoding='utf-8')
        for i in list:
            f.write(i + '\n')

    def openFile(self,path):
        with open(path,'r',encoding='utf-8') as f:
            for word in f.readlines():
                yield word.strip()

    '''构建属性字典集合'''
    def build_dict(self,loadPath,savePath,p):
        wordSet = list(self.openFile(loadPath))
        simWord=self.similarity_word(wordSet,p)
        self.save(simWord,savePath)

    '''去除字典中的重复词,并保存'''
    def del_repetition(self,file_path,save_path):
        file=self.openFile(file_path)
        self.save(set(list(file)),save_path)

if __name__=='__main__'  :
    path1 = 'D:/machinelearning data/buildDict/camera.txt'
    path2 = 'D:/machinelearning data/buildDict/processor.txt'
    path3 = 'D:/machinelearning data/buildDict/pricemin.txt'
    path4 = 'D:/machinelearning data/buildDict/performance.txt'
    path5= 'D:/machinelearning data/buildDict/serve.txt'
    path6 = 'D:/machinelearning data/buildDict/appearance.txt'
    path7 = 'D:/machinelearning data/buildDict/endurance.txt'
    demo=BulidDict()
    # set1=list(demo.openFile(path1))
    # list1=demo.similarity_word(set1,p=0.92)
    # demo.save(list1,'D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\相机0.9.txt')
    savePath1='D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\相机0.85.txt'
    savePath2 = 'D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\处理器0.89.txt'
    savePath3= 'D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\价格.txt'
    savePath4 = 'D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\性能0.93.txt'
    savePath5 = 'D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\售后0.85.txt'
    savePath6 = 'D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\外观0.9.txt'
    savePath7 = 'D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\续航电池0.7.txt'
    #demo.build_dict(path2,savePath2,0.89)#0.89最优
    #demo.build_dict(path3, savePath3, 0.6)
    #demo.build_dict(path4, savePath4, 0.93)#0.89+0.9+0.93最优
    #demo.build_dict(path5, savePath5, 0.85)#0.85最优
    #demo.build_dict(path6, savePath6, 0.9)#0.9最优
    #demo.build_dict(path1, savePath1, 0.85)#0.85和基础词典已经最优
    #demo.build_dict(path7, savePath7, 0.7)#电池0.7其余0.85最优

    '''字典的去重复工做和统一存储工做'''
    abs_path='D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\dictionary_0_2\\'
    save_name=['相机.txt','处理器.txt','价格.txt','性能.txt','售后.txt','外观.txt','续航.txt']
    open_name=['相机0.85.txt','处理器0.89(完美).txt','价格0.9+0.95+0.6(完美).txt','性能0.89+0.9+0.93(完美).txt','售后0.85(最优).txt','外观0.9(最优).txt','续航0.85+电池0.7(完美).txt']

    '''去除字典的重复词'''
    for i in range(len(save_name)):#这个打开txt文件须要open_File()的编码方式改成'utf-8'
        demo.del_repetition(abs_path+open_name[i],abs_path+save_name[i])