[转]读《无人机编队飞行技术》后感

2021年09月15日 阅读数:1
这篇文章主要向大家介绍[转]读《无人机编队飞行技术》后感,主要内容包括基础应用、实用技巧、原理机制等方面,希望对大家有所帮助。
转自:周小周MYOvO
原文连接:https://www.jianshu.com/p/d2a4358c28ee

 

基本概念

无人机编队飞行定义

无人机的编队飞行,是指两架或两架以上具备自主功能的无人机为适应任务要求而进行的必定结构的某种队形排列和任务分配的组织模式。它既包括编队飞行的队形设计、飞行过程当中的队形保持和根据外部状况及任务需求进行队形的动态调整变化,也包括飞行任务的规划和组织,以体现整个无人机群的协同一致性。其中,带队的那架无人机称为长机,而其他的无人机称为僚机。算法

无人机编队飞行的优点

  能够扩大视野安全

\bullet   能够高精度定位,多角度成像函数

\bullet   可用于演示验证星载设备性能

\bullet   可提升无人机的总体效率测试

\bullet   能够提升命中率优化

\bullet   能够减少总体的飞行阻力设计


关键技术

最快目标跟踪与最邻近目标跟踪

 

 
 

队形重构的研究内容

怎样在飞行中实时调整无人机位置使得性能良好的无人机能在飞行中完成对编队队形的重构,从而保持队形不变或者达到最优队形。orm

航迹规划结构框图

 
 

航迹规划层的目的

根据任务要求、威胁分布、无人机机动特性、燃料限制,选择K条能使无人机回避地方威胁,安全完成预约任务的飞行路径,规划结果用一系列航路点表示。io


航迹规划算法

几率地图算法——PRM

首先经过随机地在规划空间中产生必定数量的节点,并链接起来创建路标图。而后在某启发性条件的引导下,更多的节点被局限在一个狭小的空间里,路标图由此被强化,生成的Roadmap能够当作是一幅地图,经过地图能够查询出须要的航迹。form

Dijkstra算法

Dijkstra算法做为一种最小航迹选择算法,可以在短期内对节点遍历搜索,在可行解中寻求到最优解,使无人机的飞行航迹最短。

人工势场APF算法

人工势场的基本思想是将机器人在周围环境中的运动,设计成一种抽象的人造引力场中的运动,目标点对移动机器人产生的“引力”,障碍物对移动机器人产生“斥力”,最后经过求协力来控制移动机器人的运动。

K算法

K算法是在Dijkstra算法基础上,不仅求出最短路径,还要求出次优化的K条路径。

小生境粒子群算法

基于小生境粒子群的无人机编队协同航迹规划方法,首先知足各类航迹约束的条件下,序贯产生粒子构成航迹集合,避免种群中粒子的有效性测试,无须进行屡次初始化;经过引入改进的聚类小生境生成策略,在航迹规划空间内构造不一样的相互独立的小生境种群;在每一个小生境粒群体中利用粒子群算法进行速度和位置的更新,每一个粒子群的全局极值尽在本身的小生境群体中起做用,追逐不一样的极值点;而且引入种群淘汰策略,每隔必定代数,对陷入局部最优的最劣子种群进行随机初始化,从而避免了算法早熟收敛,保证了收敛到全局最优。当进化过程当中航迹代价函数趋于稳定或达到最大迭代次数时,进行过程结束,每一个小生境子种群将分别生成一条各自的最优航迹,从而为飞行器生成了多条不一样的可选航迹。